
Implementation Note - Support for Multiple TCONTs

Introduction
This implementation note documents some low-level details on the impacts across various components

in the ONOS/VOLTHA/OpenOLTAgent sub-system for multi-TCONT support.

Note: This implementation note is very technical and assumes strong understanding of existing design

and code of tech-profile implementation in ONOS Apps, VOLTHA core, Openolt/onu Adapters and

Openolt Agent.

Approach for multi-TCONT

Since each Technology Profile (TP) supports one scheduler (one TCONT), there are two ways to support

multiple scheduler (or TCONTs)

1. Enhance the TP to support multiple scheduler (or TCONT)

2. One TP per scheduler

Approach (1) will reduce the number of TPs but has issues with mapping a given TP ID uniquely for a

scheduler on a given Flow.

Thus Approach (2) is chosen due to constraint of Approach (1).

Implications on implementation
The Approach (2) has the following implication on multi-TCONT implementation

1. Each TP ID for a given (pon_id, onu_id, uni_id) tuple corresponds to a unique TCONT
Note 1.

2. Statement (1) conversely means that we cannot have two different TCONTs referring to same TP

ID on a given (pon_id, onu_id, uni_id) tuple Note 1.

The NBI systems must ensure that if a different TCONT is required for a given subscriber, they must use

different TP Note 1. The database to store the TP related information (by openolt adapter) for each

subscriber must appropriately adapt to this now constraint. These low-level details will be documented

further.

Note 1
When the TP model indicates the instance is at the ONU Level (through ‘Instance Control Attribute’), we

would create an instance in the same way with the same index (including UNI) for the per ONU TCONT

model also. Since each UNI shares the same TCONT but has its own GEM Ports we would create the first

instance on the ONU with a unique TCONT(Alloc-ID) and unique GEM Ports. The second UNI to use the

Tech Profile (ONU instance = ‘Single Instance’) on the same ONU would reuse the TCONT from the first TP

Instance but allocate its own GEM Ports. The code would need to ensure that only one TCONT is allocate

for this case and it is returned to the resource manager only when all Flows which reference it are deleted.

The bandwidth profiles applied to these individual flows must be aggregated together for the upstream

TCONT (DBA) scheduler. The ONU needs to rate limit the upstream GEMs to their individual Bandwidth

profiles. Downstream the config is same as if the flows are individual flows – only upstream has special

shared bandwidth at the Aggregate (TCONT) level.

Code examples
There are some code examples (function names, constants, variable names, code snippets) in this

implementation note and are picked up from Python openolt adapter. Please look for Golang OpenOLT

adapter counterparts when referring these code examples and adapt them accordingly.

Impacts on ONOS/Apps
The below API is currently used to provision service with specific tags for a subscriber

http://ip:port/onos/olt/oltapp/services/<subscriber-id>/<s-tag>/<c-tag>

The TP ID for this subscriber was chosen from the SADIS configuration based on the subscriber-id key.

This must change as below so that we can prompt the specific TP ID to be used for a given subscriber-id,

s-tag and c-tag.

http://ip:port/onos/olt/oltapp/services/<subscriber-id>/<s-tag>/<c-tag>/<tp-id>

Note1: TP-ID is optional. If TP-ID is not specified, it is chosen from SADIS config.

Impacts on OFAgent
No impacts

Impacts on VOLTHA NBI and Core
No impacts

Impacts on vCLI
No impacts

Impacts in OpenOLT adapter
The way the data is stored and retrieved will change to accommodate multi-TCONT.

1. TP Path: NO UPDATE
service/voltha/technology_profiles/<technology>/<tp_id>

http://ip:port/onos/olt/oltapp/services/%3csubscriber-id%3e/%3cs-tag%3e/%3cc-tag
http://ip:port/onos/olt/oltapp/services/%3csubscriber-id%3e/%3cs-tag%3e/%3cc-tag%3e/%3ctp-id

2. TP Instance Path: NO UPDATE
service/voltha/technology_profiles/<technology>/<tp_id>/<uni_port_name>

Since TP ID is unique per TCONT, there is no impact.

3. "TP ID path" for (pon_id, onu_id, uni_id): UPDATE REQUIRED

The ‘tp_id’ is stored at below path
service/voltha/openolt/<olt-device_id>/tp_id/<(pon_id, onu_id, uni_id)>

It must change as below,
service/voltha/openolt/<olt-device_id>/<(pon_id, onu_id, uni_id)>/tp_id

Also, this key will not map to a single tp_id, but a list of tp_id since we start supporting multiple

tconts.

4. “Meter ID path”: UPDATE REQUIRED

The meter_id path should change from
service/voltha/openolt/<olt-device-id>/meter_id/<(pon_id, onu_id,

uni_id)>/<direction>/<meter_id>

to

service/voltha/openolt/<olt-device-id>/ <(pon_id, onu_id,

uni_id)>/<tp-id>/ meter_id/<direction>/<meter_id>

The ‘update_meter_id_for_onu’, ‘get_meter_id_for_onu’ and ‘remove_meter_id_for_onu’

functions should now carry the ‘tp_id’ as this is necessary to store, retrieve and delete the

meter_id information.

5. Do not get alloc_id and gem_ports from KV store. Use TP Instance JSON blob to get the required

alloc_ids and gemport IDs during flow processing. The change is shown below. The

get_alloc_id_from_tp_instance function should be implemented to fetch alloc_id and

gemport_ids from tp_instance json blob.

 def divide_and_add_flow(self, intf_id, onu_id, uni_id, port_no, classifier,

 action, flow, tp_id, us_meter_id, ds_meter_id):

 self.log.debug('sorting flow', intf_id=intf_id, onu_id=onu_id,

 uni_id=uni_id, port_no=port_no,

 classifier=classifier, action=action,

 tp_id=tp_id, us_meter=us_meter_id,

 ds_meter=ds_meter_id)

 tp_instance = self.get_tech_profile_instance(intf_id, onu_id, uni_id, tp_id)

 if tp_instance is None:

 self.log.error("flow-not-added--tp-instance-unavailable")

 return

 pon_intf_onu_id = (intf_id, onu_id, uni_id)

- alloc_id = \

- self.resource_mgr.get_current_alloc_ids_for_onu(pon_intf_onu_id)

- gem_ports = \

- self.resource_mgr.get_current_gemport_ids_for_onu(pon_intf_onu_id)

+

+ alloc_id = self.get_alloc_id_from_tp_instance(tp_instance)

+ gemports = self.get_gemports_from_tp_instance(tp_instance)

 if alloc_id is None or gem_ports is None:

 self.log.error("alloc-id-or-gem-ports-unavailable",s

 alloc_id=alloc_id, gem_ports=gem_ports)

 return

 self.create_us_scheduler_queues(intf_id, onu_id, uni_id, tp_instance, us_meter_id)

 self.create_ds_scheduler_queues(intf_id, onu_id, uni_id, tp_instance, ds_meter_id)

6. The ‘get_current_alloc_ids_for_onu‘ in openolt_resource_manager.py should return the list of

alloc_ids for the ONU and not just the first alloc_id.

7. Clean-up:

In the below two functions in openolt_flow_mgr.py, loop through all the tp_id for the ONU and

clean-up the TP Instance associated with those tp_id. Currently, it is done only for one tp_id, but

we will have multiple tp_id when multi-Tcont is supported.

a. _clear_flow_id_from_rm

b. clear_flows_and_scheduler_for_logical_port

Impacts in Tech-Profile module
When the TP model indicates the instance is at the ONU Level (through ‘Instance Control Attribute’), we

would create an instance in the same way with the same index (including UNI) for the per ONU TCONT

model also. Due to the face that each UNI shares the same TCONT but has its own GEM Ports we would

create the first instance on the ONU with a unique TCONT(Alloc-ID) and unique GEM Ports. The second

UNI to use the Tech Profile (ONU instance = ‘Single Instance’) on the same ONU would reuse the TCONT

from the first TP Instance but allocate its own GEM Ports. The code would need to ensure that only one

TCONT is allocate for this case and it is returned to the resource manager only when all Flows which

reference it are deleted.

Impacts in Resource Manager module
1. The ‘update_alloc_ids_for_onu’ over-writes old alloc_ids. This needs to change to append new

alloc_ids with the old contents.

2. The ‘update_gemport_ids_for_onu’ over-writes old gemport_ids. This needs to change to append

new gemport_ids with the old contents.

Impacts in OpenONU adapter
The ONU adapter already maintains states on a per TP Instance Path for a given UNI port. Since, each

TCONT has a unique TP path, there are no issues and no changes required.

Impacts in OpenOLT agent
The Queue and Scheduler model at OpenOLT agent is below.

Downstream
In the Downstream Direction the OLT Traffic Management for AT&T could be as the Figure Below:

Upstream

In the Upstream Direction the OLT Traffic Management could be as the Figure below:

P 6.7 TM_Q

 P 5 TM_Q

P 4,3,1 TM_Q
P 2,0 TM_Q

PON#

1

PON TM

Sched

ONU#1

Flows

ONU#128

Flows

P 6,7 TM_Q
 P 5 TM_Q

P 4,3,1 TM_Q
P 2,0 TM_Q

 :

 :

 :

 :

TM_Queues

TM_Queues

NNI

TM-Sched

P0

P1

P2

P3

FlowQueues

Sub_term

Scheduler

PON

Scheduler

TM-Sched

P0

P1

P2

P3

Impact on management of Scheduler IDs
As seen in the above section, in the current model, we have unique schedulers per subscriber in upstream

and downstream direction. The sched_id for these schedulers is not managed from VOLTHA resource

manager but are generated at OpenOLT agent. With single-tcont, the sched_id is unique per (pon_intf_id,

onu_id, uni_id, direction) key. When we start supporting multiple-tcont we need slight adjustment to get

unique sched-ids.

Uplink
Add alloc_id to (pon_intf_id, onu_id, uni_id, direction) to get unique IDs

Downlink
Although alloc_id is not relevant in Downlink, adding alloc_id should solve the problem for downlink too.

Impact on management of Queue IDs
No impact.

NNI TM

Sched

NNI PON

#1

P 7,6 TM_Q

P 5 TM_Q

P 4,3,1 TM_Q

P 2,0 TM_Q

P0

P1

P3

P2

TM_SCHED(DBA)

TM_SCHED(DBA)

NNI FlowQueues

TCONT(DBA)

Scheduler

TM_Queues NNI

 :

 :

 :

 :

ONU#1

ONU#128

Flow Spec

GEM Port ID
o_pbits=7,6

GEM Port ID
o_pbits=5
 GEM Port ID

o_pbits=4,3,1
 GEM Port ID

o_pbits=2,0

GEM Port ID
o_pbits=7,6
 GEM Port ID

o_pbits=5
 GEM Port ID

o_pbits=4,3,1

GEM Port ID
o_pbits=2,0

