
VOL-948: TC Layer Resource Manager per PON port

Approach with High Level Design Details

Appoach1 – Resource Manager as a Python Module
The Resource Manager is a Python module, which implements the ResourceManager class.

Adapter should import the module and instance of the ResourceManager should be created and

initialized when the OLT Device is created.

A single instance of the ResourceManager exists per OLT device, and it exposes APIs to create/free

alloc_ids/gem_ports.

The ResourceManager uses a KV store backend to ensure resiliency of the data.

The UML diagram of the ResourceManager looks as below.

Approach2 – Resource Manager as GoLang module with Python wrappers
The Resource manager is implemented as a GoLang library with similar interfaces as explained above.

This GoLang program is then compiled as a shared library and imported in a Python program. This

Python program can be imported by OpenOlt (or other) adapters and work seamlessly.

Below diagram puts things in perspective for Approach2.

Advantages
1. The GoLang program could be re-used if/when we move entirely to GoLang

Disadvantages/Challenges
1. Not all GoLang data types can be easily mapped to their C Struct types in Python.

2. Additional overhead of writing, compiling and importing a GoLang program into Python

modules.

Low Level Design Details
The ResourceManager will use the BitString utility to track the resources.

The K/V store path can look something like below

/resource_manager/<technology>/<device_id>/alloc_id_pool/<pon_intf_id>/<alloc_id_strin

g_blob>

/resource_manager/<technology>/<device_id>/gem_id_pool/<pon_intf_id>/<alloc_id_string_

blob>

Example:

/resource_manager/xpon/0001a2ee3b54ea5c/alloc_id_pool/0/1000010000…

Use Case

Initialize the Resource Manager
1) Use init_alloc_id_pool and init_gemport_id_pool to initialize alloc id and gemport id

pools per PON port. Pass optional parameters start_index, end_index.

Allocate Resource(s)
1. When new resource(s) (gemport or tcont) is needed, query the ResourceManager using the

get_alloc_id or get_gemport_id API.

2. ResourceManager responds with list (list size could be 1) of resources. The data is backed up

on the K/V store for resiliency purposes.

Free Resource(s)
1. When resource(s) (gem port or tcont) are to be freed, use the ResourceManager

free_alloc_id or free_gemport_id API.

2. ResourceManager responds with Boolean on the status of the free action. Data is backed up

on K/V store for resiliency purposes.

Corner Cases
There are some corner cases related to adapter container (in Voltha 2.0) going down before resources

are committed to device. In such cases, it is possible that the K/V store and device information could be

out-of-sync. As of today, there is not much clarity on adapter containerization, resiliency and such

topics. These need to be looked into later.

